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Abstract—A novel and efficient gradient-based optimization
technique for the finite-element method (FEM) is described. In
contrast to the standard approach in which finite differences
are used to determine the gradient of a cost function, the new
technique calculates the gradient analytically. This offers many
advantages, among which the most prominent ones are: only a
single FEM analysis is necessary to find the gradient and no mesh
readjustment is required. Thus, computer resources like memory
and CPU time are reduced significantly. The analytically calcu-
lated gradient is exact and singularities (as in the finite-difference
technique) are eliminated.

Index Terms—CAD, finite-element methods, gradient methods,
optimization methods, resonance, scattering parameters, simula-
tion, waveguide filters.

I. INTRODUCTION

A CCURATE design of increasingly complex microwave
circuits can often be achieved only through sophisticated

optimization methods. It is generally accepted that efficient
optimization methods are those exploiting not only the values
of the cost function, but its gradient and even its Hessian matrix
as well. The gradient of the cost function is, most of the time,
evaluated by repeated analyses at closely spaced values of the
independent variables. Such a process can be prohibitively
time consuming when the number of independent variables is
large and when the analysis method itself is very general. This
applies in particular to the finite-element method (FEM). The
generality of the FEM necessitates a large amount of computer
memory and CPU time, and it is, thus, not surprising that
the FEM has not found widespread use in the optimization
of microwave structures since hundreds or even thousands of
analysis runs may be required.

To some extend, this problem has been addressed recently
by a fully automated space mapping optimization of three-di-
mensional (3-D) structures [1]. This approach is based on a
combination of electromagnetic (EM) simulators (e.g., the com-
mercial 3-D FEM simulator HFFS) and empirical engineering
models. The EM simulators generate the so-called fine models
(accurate, but computationally slow), which are then mapped
onto coarse models (not exact, but computationally fast) using
parameter-extraction techniques. The optimization is then per-
formed with the coarse model; thus, significantly reducing com-
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putation time. Coarse models can either be coarse-resolution
EM or empirical models. The problem with the latter is that, for
each specific microwave structure, an empirical model has to
be derived. Other techniques that use a combination of Broyden
updates and finite differences to accelerate the FEM optimiza-
tion are described in [2].

For general analysis techniques to offer a viable design
alternative to more restricted and albeit much more effective
methods, it is necessary to develop ways of extracting from a
single analysis more than simply the value of the solution. The
mere inclusion of information on the sensitivities of the solution
to structural changes in the system, if these are evaluated at
minor additional computational cost, will certainly give a new
push to the idea of optimization using these general techniques.

In this paper, we propose a method to compute all port sen-
sitivities of a microwave structure from a single analysis using
the FEM. Gradients of port parameters such as scattering pa-
rameters can be computed analytically from a single analysis
and without finite differencing. The advantages of the herein
described approach over the traditional finite differences are in-
deed tremendous, especially for the FEM where using finite dif-
ferences to evaluate gradients requires not only two separate
analyses, but a re-meshing for each independent variable. More
specifically, the present approach offers the following features:

1) analytic calculation of gradients of cost and port functions
without finite differences;

2) all gradients are computed from a single analysis of the
structure regardless of its complexity;

3) it is not even necessary to invert a large matrix; a linear
system is solved instead;

4) no re-meshing is needed;
5) the gradient values are exact in the sense of the approxi-

mate solutions generated by the FEM;
6) finite differences can be optionally used on the matrix

and not the solution.
It is worth describing briefly these points one by one. The first
point allows a considerable reduction in CPU time. The second
point makes it possible to apply the technique to any structure
that can be analyzed by the FEM. The third point reduces the
overall CPU time since inverting a matrix is an process,
while solving a set is an operation ( is
a symmetric band matrix in the FEM [3]). By using only one
analysis, it is not necessary to readjust the mesh to calculate
the gradient. The fifth point emphasizes the robustness of the
approach even in the vicinity of strong resonances where the
finite-difference approach fails. Finally, the method is flexible
enough to allow one to use finite differences on the matrix,
analyze the structure only once, and yet compute all network
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Fig. 1. H-plane iris filter.

sensitivities. Although a somewhat similar idea was proposed
in [4], the method was limited to the optimization of permittiv-
ities using the FEM in conjunction with the adjoint state vector.
In [5], the authors have developed this approach much further
for the optimization of microwave structures calculated by the
coupled-integral-equations technique (CIET) and, in this paper,
the method is expanded to optimize general microwave struc-
tures with the FEM.

II. THEORY

The key to this new approach is to put the analysis of the struc-
ture to be optimized into a scattering problem representation of
the form

(1)

Here, is a matrix, which depends on the independent
variables and represents the structure to be optimized,is the
excitation, and is the response.

The optimization problem consists in determining the
optimal values of the independent geometrical variables

such that the response function is equal to
an optimal function . Note that the independent variables
appear explicitly in both the matrix as well as in the
excitation in general. We assume also that the optimization
problem consists in minimizing a cost function, which
depends explicitly on the solution .

To illustrate the procedure, we have chosen a waveguide
-plane iris filter (shown in Fig. 1). The task is to optimize a

filter response to given specifications. For that purpose, a suit-
able cost function has to be found. Generally, the cost function
consists of the differences between computed and desired data
of the scattering parameters. A possible cost function is given
below.

Function has to be minimized during the optimization
process

(2)

where is the reflection coefficient of the structure,
which depends on the frequency as well as the geometric pa-
rameters , .

Here, are constants and are specified frequencies in
the desired band.

For the gradient of the function , we take the partial
derivatives with respect to the parameters

(3)

The partial derivatives of the absolute value of the reflection
coefficient are easily found as

similarly for the transmission coefficient. For clarity of presen-
tation, the distance between the irises in the structure of Fig. 1
are kept constant and only their height is subject to optimiza-
tion.

In order to calculate the scattering parameters with the FEM,
the transmitted and reflected waves are determined at the fol-
lowing reference planes.

• Cutting plane A:

(4)

• Cutting plane B:

(5)

Here, , .
For simplicity, we have chosen the two-dimensional (2-D)

FEM using scalar interpolation functions and a triangular mesh.
It is straightforward to extend the procedure to the 3-D FEM.

The structure in Fig. 1 is assumed to be lossless and the in-
cident fundamental -mode excites only modes. We
are interested in and of the fundamental mode at the
cutting planes A and B. The assumption is that, at these planes,
all higher order modes have vanished. The electric field at plane
A is obtained from the scalar Helmholtz equation ( )

(6)

Considering the boundary conditions (Dirichlet at
waveguide walls (electric wall) and Neumann
at magnetic walls), the electric field satisfies the following
relations:

at plane A

at plane B (7)

and the scattering parameters we are interested in are found from

(8)

provided the dielectric is lossless and power conservation
( ) holds.
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Fig. 2. Linear interpolation functions (a)N , (b)N , (c)N .

The functional associated with (6) is

(9)

Here, is the area of element, is the boundary , and
is boundary . Equation (9) is readily found from the FEM

analysis of the computational domain [6].
Discretizing the structure into triangles, the electric field

inside one triangle can be expressed as

(10)

where are the interpolation or expansion functions
(Fig. 2) given by

with

.
It can be shown that the interpolation functions have the prop-

erty [6] .
With the expansion of , we can proceed to formulate

the system of equations using either the Ritz or Galerkin
methods. The functional for this variational problem is

, where is the total number of
triangles and is the element number, with given in

(9). Differentiating this functional with respect to and
arranging the results in matrix form, we get

(11)

The following notations are used in this equation:

Equation (11) index: : edge number (edges on or ), :
triangle number, : edge length.

, ( are local
node numbers of element; , are the corre-
sponding global node numbers) and similar with the nodes on
the boundaries and to get the system of equations typical
for the FEM as follows:

(12)

The coefficients are not only the solutions of the system,
but also the values of the electric field in the-direction for all
nodes in the mesh. The reflection and transmission coefficients
can now be calculated from (8).

III. A NALYTICAL GRADIENT EVALUATION

Taking the derivatives of (12) yields

(13)

According to (8), is a function of at plane and, there-
fore, the gradients of are functions of the gradients of as
follows:

(14)

One way to solve (14) is the following:

(15)

However, this requires a matrix inversion and, thus, is not
the best option. A better way avoiding matrix inversions is to
solve (13) directly for . and are known
from the calculation of . The gradient of the excitation

is zero because there are no structural changes
at the excitation plane . Hence, one only needs to calculate
the derivatives of the matrix elements, which are functions of

. To illustrate the procedure, we limit ourselves to find the
optimum heights of the irises in the waveguide filter shown
in Fig. 1. The thickness of the irises is kept constant (1-mm
standard metallization thickness).
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Fig. 3. SingleH-plane iris with triangular mesh.

Fig. 3 shows a single iris of the filter partly discretized by a tri-
angular mesh. By changing the height, the nodes marked with
a square are moving up or down. The nodes marked with a circle
stay fixed. All triangles shown in the figure will change their
area. The matrix elements of are functions of the triangle
areas and coordinates of the nodes. If we change the heights of
the iris (Fig. 3), we change the-coordinates of the nodes re-
siding on the stubs. Therefore, the’s and the triangle area will
change according to . A closer look at is
quite revealing as follows:

(16)

For triangle (hatched in Fig. 3) with nodes 1 and 2 on the
moving edge, one obtains

and

It follows for the partial derivatives of , height ,
e.g.,

For all other elements , the procedure is similar. If
the gradient with respect to all variables is evaluated, a stan-
dard gradient optimization routine can be utilized for further
processing.

In summary, the procedure is as follows.

1) Substitute the values of the-coordinates of the nodes
marked with square or .

2) Do the same for the other irises.
3) Take the derivatives of all matrix elements that are related

to the nodes marked with a square or a circle with respect
to , , and .

4) Put the results in matrices .
5) Solve (13) for

6) Supply the optimization routine with analytically calcu-
lated gradients of .

Although the substitution of a parameter as described under
1) is only applicable for moving or stretching a stub or a rec-
tangle, respectively, more general structures consisting of a mix-
ture of rectangles, cylinders, circles etc. can be optimized as
well. A more general way than the one shown here to describe
arbitrary geometrical structures as functions of user-defined pa-
rameters can be found in [7]. By using this method, the geo-
metrical objects and, hence, the nodes or vertices of the mesh
triangles residing on those objects that are subject to optimiza-
tion (structural changes), are given as mathematical formula-
tions. These formulations include the optimization parameters.
It is then straightforward to proceed as illustrated in 1)–6) to cal-
culate the gradients, which can then be used for automated EM
optimization.

IV. DISCUSSION

The actual implementation of the technique can further re-
duce the numerical effort. The gist of the approach is the fol-
lowing identity, which follows from (12) by the following dif-
ferentiation:

The quantity of interest is the gradient of the solution
. Since both and are column vectors, it

is advantageous to avoid inverting the matrices involved and,
instead, solve for these column vectors. This simple scheme
reduces the CPU time by a factor of three and is described as
follows.

1) Solve the linear set without first in-
verting the matrix (numerical recipes [8]).

2) Compute partial derivatives .
3) Substitute those in

4) Solve this last equation for again without
inverting the matrix .

Point 4) can be carried out by using an already processed
matrix from point 1). (e.g., LU decomposition).

V. RESULTS

Fig. 4 shows the results of the optimization of the-plane
iris filter (Fig. 1). The size of the standard waveguide (WR75) is

mm 9.525 mm. The distances between the irises
(thickness mm) have been kept fixed: mm,

mm, mm. The starting values
for the variable heights have been chosen as mm,

mm, and mm. For the gradient opti-
mization process, we have utilized the Matlab routine “constr”
and a triangular mesh with approximately 5500 triangles, 3000
nodes, and 50 frequency points. The routine converged after 19
iterations and delivered the optimal heights mm,

mm, and mm. The results for
for both start and optimized parameters are shown in Fig. 4.
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Fig. 4. Optimization results of theH-plane iris filter.

Fig. 5. Derivatives ofS of theH-plane iris filter.

for the optimized values is also displayed. The optimized return
loss in the passband is better than 15 dB.

In Fig. 5, the derivatives of with respect to the iris heights
are shown. It can be seen that the investigated filter is very sen-
sitive to structural changes and large values for the derivatives
can occur. It is obvious that evaluating the derivatives with finite
differences can give errors especially near the sharp peaks.

Another filter that has been investigated is shown in Fig. 6.
The variables are the openings of the inductive irisesand ,
respectively. The dimensions of the filter are given in the figure.
The FEM approach is the same as for the asymmetric-plane
iris filter (Fig. 1).

Fig. 7 shows the result of the optimization of the-plane
filter (Fig. 6). Although with a filter synthesis program better
starting values could have been obtained, the intention was to
go far away from the goal values to show the validity of this
method. For the analysis, a triangular mesh with about 2000 tri-
angles and 1100 nodes and 100 frequency points have been used
to guarantee sufficient accuracy. The optimization process con-
verged after 23 iterations. The same structure has been inves-
tigated in [9] using an equivalent-circuit model and the mode-

Fig. 6. Bandpass filter for theKa-band:a = 7:10 mm, l = 1:45 mm, l =

4:15mm,l = 1:10mm,l = 4:70mm,h = 1:75mm, andh = 2:35mm.
h , h are variables.

Fig. 7. Optimization results.

Fig. 8. Parallel-plate waveguide with dielectric insert (� = 4), infinitely long
in thez-direction.

matching technique with edge condition, and good agreement
was found.

Dielectrically loaded waveguide structures can also be
optimized with the 2-D FEM optimizer. The structure, a par-
allel-plate waveguide with a lossless dielectric insert, is shown
in Fig. 8. The FEM analysis is similar to the one explained
above, except that now the-field in the -direction ( ) was
used as a quantity of interest. The reflection and transmission
coefficient and and the gradient of

with respect to are functions of
. The mesh used for this structure is shown in Fig. 9.
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Fig. 9. Mesh setting: triangular mesh with 1088 elements and 601 nodes.

Fig. 10. Reflection and transmission coefficient versus heighth (in
centimeters).

Fig. 11. Derivatives ofjS j with respect toh versus heighth (in centimeters).
Finite-difference calculated with increment�h = 0:05 cm.

The transmission and reflection coefficient of the structure
is calculated at GHz and is given in Fig. 10. Finally, the
analytically evaluated gradient is compared to the gradient eval-
uated with finite differences. This is illustrated in Fig. 11. The
finite-difference gradient is calculated by varying the height of
the stub by the increment cm. A new mesh is then
put onto the structure and the reflection coefficient is calculated
again. The difference between the calculated reflection coeffi-
cients divided by the increment gives the finite-difference
gradient. The analytical gradient is calculated by the technique
proposed in this paper. Only the nodes that touch the dimen-
sion that is changing have to be taken into account (see Fig. 3).
Good agreement can again be observed between the analytically
calculated gradient and the one obtained through finite differ-
encing.

VI. CONCLUSIONS

We have developed a method for analytically calculating the
gradient of a cost function in conjunction with a general field
solver. The method only requires that the problem be formu-
lated in terms of a general inhomogeneous matrix equation such
as generated by the FEM. All partial derivatives are determined
from a single analysis of the structure, no matrix inversion is
required, and no re-meshing of the FEM grid is needed. Nu-
merical results show excellent agreement between the current
approach and the finite-difference method when small enough
increments are used. Results of the optimization show the va-
lidity of the whole process.
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