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A Fast Finite-Element-Based Field Optimizer Using
Analytically Calculated Gradients

Peter HarscheMember, IEEESmain Amarj Member, IEEEand Rudiger Vahldieck=ellow, IEEE

Abstract—A novel and efficient gradient-based optimization putation time. Coarse models can either be coarse-resolution
technique for the finite-element method (FEM) is described. In EM or empirical models. The problem with the latter is that, for
contrast to the standard approach in which finite differences o0 gpecific microwave structure, an empirical model has to
are used to determine the gradient of a cost function, the new be derived. Other techni that ’ binati fBrovd
technique calculates the gradient analytically. This offers many e derived. . ?r ec; niques that use a combination o r.oy_ en
advantages’ among which the most prominent ones are: On|y a updateS and finite differences to accelerate the FEM Optlmlza-
single FEM analysis is necessary to find the gradient and no mesh tion are described in [2].
readjustment is required. Thus, computer resources like memory For general analysis techniques to offer a viable design
and CPU time are reduced significantly. The analytically calcu-  4tarpative to more restricted and albeit much more effective
lated gradient is exact and singularities (as in the finite-difference thods. it i to devel f extracting f
technique) are eliminated. methods, it is necessary to develop ways of extracting from a

o . single analysis more than simply the value of the solution. The

Index Terms—CAD, finite-element methods, gradient methods, - i ere inclusion of information on the sensitivities of the solution
optlmlzatlon methods, resonance, scatterlng parameters, 5|mula-t t t | ch in th t it th luated at
tion, waveguide filters. o structural changes in the system, if these are evaluated a

minor additional computational cost, will certainly give a new
push to the idea of optimization using these general techniques.
. INTRODUCTION In this paper, we propose a method to compute all port sen-

CCURATE design of increasingly complex microwavsitivities of a microwave structure from a single analysis using
A circuits can often be achieved only through sophisticaté® FEM. Gradients of port parameters such as scattering pa-
optimization methods. It is generally accepted that efficiei@Meters can be computed analytically from a single analysis
optimization methods are those exploiting not only the valu@@d without finite differencing. The advantages of the herein
of the cost function, but its gradient and even its Hessian matHgscribed approach over the traditional finite differences are in-
as well. The gradient of the cost function is, most of the timg€eed tremendous, especially for the FEM where using finite dif-
evaluated by repeated analyses at closely spaced values off@f@nces to evaluate gradients requires not only two separate
independent variables. Such a process can be prohibitivefj2lyses, buta re-meshing for each independent variable. More
time consuming when the number of independent variablesSgecifically, the present approach offers the following features:
large and when the analysis method itself is very general. This1) analytic calculation of gradients of cost and port functions
applies in particular to the finite-element method (FEM). The  without finite differences;
generality of the FEM necessitates a large amount of computer2) all gradients are computed from a single analysis of the
memory and CPU time, and it is, thus, not surprising that  structure regardless of its complexity;
the FEM has not found widespread use in the optimization 3) it is not even necessary to invert a large matrix; a linear
of microwave structures since hundreds or even thousands of systemK]{E} = {b} is solved instead;
analysis runs may be required. 4) no re-meshing is needed;

To some extend, this problem has been addressed recentlp) the gradient values are exact in the sense of the approxi-
by a fully automated space mapping optimization of three-di- ~ mate solutions generated by the FEM;
mensional (3-D) structures [1]. This approach is based on a6) finite differences can be optionally used on the mdiik
combination of electromagnetic (EM) simulators (e.g., thecom-  and not the solution.
mercial 3-D FEM simulator HFFS) and empirical engineerinli is worth describing briefly these points one by one. The first
models. The EM simulators generate the so-called fine modelsint allows a considerable reduction in CPU time. The second
(accurate, but computationally slow), which are then mappedint makes it possible to apply the technique to any structure
onto coarse models (not exact, but computationally fast) usitigat can be analyzed by the FEM. The third point reduces the
parameter-extraction techniques. The optimization is then pewrerall CPU time since inverting a matfik ] is an/N? process,
formed with the coarse model; thus, significantly reducing comhile solving a sefK1{E} = {b} is anN? operation [K] is
a symmetric band matrix in the FEM [3]). By using only one
. . _ analysis, it is not necessary to readjust the mesh to calculate
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| o SYmmetry For the gradient of the functiof'(a;), we take the partial
E derivatives with respect to the parametess
Y® | /H-Plane stubs
— ! oF optimal
TE ,,— m | / > T 2y W, {|511(wn, a;)| = ST (wn, a;) }
a *‘2] | H - - 01511 (wn, i)
N | lSu(wn,a)l g
T—»Z hlI i I—l aai : ( )
A e B oM B , - _
! The partial derivatives of the absolute value of the reflection
Fig. 1. H-plane iris filter. coefficient are easily found as
0|511] R |S11| 9511
sensitivities. Although a somewhat similar idea was proposed oo, |8, Om

in [4], the method was limited to the optimization of permittiv-

ities using the FEM in conjunction with the adjoint state vectogimilarly for the transmission coefficient. For clarity of presen-
In [5], the authors have developed this approach much furtdagion, the distance between the irises in the structure of Fig. 1
for the optimization of microwave structures calculated by tt&f® kept constant and only their height is subject to optimiza-
coupled-integral-equations technique (CIET) and, in this pap&fn-

the method is expanded to optimize general microwave strucdn order to calculate the scattering parameters with the FEM,
tures with the FEM. the transmitted and reflected waves are determined at the fol-

lowing reference planes.

« Cutting plane A:

Il. THEORY gp
The key to this new approach is to put the analysis of the struc- e e ) ik ks

ture to be optimized into a scattering problem representation dfv = £y +E£,~ = Eo sin(kew) [e "7+ 5] (4)

the form + Cutting plane B:

[Al{z} = {o}. @)

Here,[A] is aM x M matrix, which depends on the independent
variables and represents the structure to be optimizeds the ~ Here,k,, = 7/a, k3 = k2 + k2.
excitation, and{z} is the response. For simplicity, we have chosen the two-dimensional (2-D)
The optimization problem consists in determining thEEM using scalar interpolation functions and a triangular mesh.
optimal values of the independent geometrical variabléisis straightforward to extend the procedure to the 3-D FEM.
ai, as, as, ..., a, such that the response function is equal to The structure in Fig. 1 is assumed to be lossless and the in-
an optimal functionz°Pt. Note that the independent variablegident fundamentdl'E;o-mode excites on{{'E,,,o modes. We
appear explicitly in both the matrix4] as well as in the are interested irf;; and Sy; of the fundamental mode at the
excitation{b} in general. We assume also that the optimizatioczutting planes A and B. The assumption is that, at these planes,
problem consists in minimizing a cost functiafi, which all higher order modes have vanished. The electric field at plane
depends explicitly on the solutiofx}. A is obtained from the scalar Helmholtz equatipn & 1)
To illustrate the procedure, we have chosen a waveguide
H-plane iris filter (shown in Fig. 1). The task is to optimize a 9 <i %) + 9 <i aEy) +k2E,=0. (6)
filter response to given specifications. For that purpose, a suit- dx \ pr Oz Oz \ pir Oz !

able cost function has to be found. Generally, the cost func“%nsidering the boundary conditions (Dirichlg}, = 0 at
consists of the differences between computed and desired %eguide walls (electric wall) and Neuma#i, /dn = 0

of the scattering parameters. A possible cost function is givgh magnetic walls), the electric field satisfies the following

E, = EJ™™ = Sy Fgsin(kya)e ™/ (5)

below. o . __ relations:
FunctionF(a;) has to be minimized during the optimization OF
process 5 Y — jk.E, = — jzk.Eosin(k,z) at plane A
4
2 aEy .
; —= +jk. E, =0atplane B 7
Fla) = 3" W [|sn<wn, ai)| - ST, a) } @) 5, tIMEy=0atp ")
" and the scattering parameters we are interested in are found from
whereS:1(wy, a;) is the reflection coefficient of the structure, E,(z =0) E,(z = zp)
which depends on the frequency as well as the geometric paiii = Ey—k —1 Sn=4— yk —is ©
rametersy;, 2 = 1, ..., N. o sin(k.x) o sin(kyxz)eIk=

Here,W,, are constants and,, are specified frequencies inprovided the dielectric is lossless and power conservation
the desired band. (1511)2 + |S21]2 = 1) holds.
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(9). Differentiating this functional with respect tb; . and
arranging the results in matrix form, we get

1 3 M M,
: >N E Y (KB - )) = (0. ap
e=1 s=1
1 2
(a) {b) {c) The following notations are used in this equation:
. . . . . . . . 1 o .o 5 A°
Fig. 2. Linear interpolation functions (&, (b) Nz, (c) Ns. Kij = E (bi bj + ¢ Cj) _ ko ﬁ (1 + 5”.)
_ ®
The functional associated with (6) is Kfjfr‘“ =—jk. 3 (14 6i5)
1 DESN?  [OES\? K=Te = jk r (1 +645)
Fe(ESY = y y _ .2 E¢ 2 i —JE 6 3
() 2//<<8)+<8) k0<y>> |
s=I"4 . . s
ik b; =—2jk. Eosin(k,x) =.
+ / [2]‘sz0 sin(k,x) ES — 122 (E;)Q} dr 2
La 2 Equation (11) indexs: edge number (edges ot or B), ¢:

3 / |:jkz (EZ)2:| JL. ©) triangle numberl,: edge Iesngth. o
Ty 2 Kij = Kn(i, e),n{j, e)r Kij = Kn(i,s),n(j,s) ('L, J are local
node numbers of element n(:, ¢), n(j, ¢) are the corre-
Here, 2. is the area of element, I 4 is the boundary4, and  sponding global node numbers) and similar with the nodes on
I'p is boundaryB. Equation (9) is readily found from the FEMthe boundariest and B to get the system of equations typical

analysis of the computational domain [6]. for the FEM as follows:
Discretizing the structure into triangles, the electric filgl
inside one triangle can be expressed as [K]{Ey} = {b}. 12)

The coefficientst, are not only the solutions of the system,
. . . but also the values of the electric field in thealirection for all
Ey(x, z) = Z Nj(w, 2)E, (10) " hodes in the mesh. The reflection and transmission coefficients
=t can now be calculated from (8).

where N¢(z, z) are the interpolation or expansion functions

(Fig. 2) given by IIl. ANALYTICAL GRADIENT EVALUATION

Taking the derivatives of (12) yields

1
Ni(z, 2) = —— (a§ + bz + ¢ 2) 7=1,2,3 g g g
J i e J J K] i . » S T - _ J .
2A ) g 1B} = g 0 = (g ) {8 ). @9)
with According to (8),51; is a function ofE, at planeA and, there-
o o o o fore, the gradients of;; are functions of the gradients &f, as
#a3 T A3t follows:
e __ 2.6 _ Lepe
a = | 2371 — 2{T3 8511 _ 1 BEy(z =0) (14)
Z1Xy = 2Ty oh;  Eysin(k.x) Oh; '
2T One way to solve (14) is the following:
b = | z§ —z§
M 1 a o
e e = K —{b}—| = [K E .
75— 25 (15)
= | -2 However, this requires a matrix inversion and, thus, is not
25 — 25 the best option. A better way avoiding matrix inversions is to
solve (13) directly fod/9h;){E,}. [K] and{E,} are known
A® = (1/2) (b5c§ — b5cs). from the calculation ofS;;. The gradient of the excitation
It can be shown that the interpolation functions have the pro@/ah;){b} is zero because there are no structural changes
erty [6] Vi (x5, 25) = 6ij- at the excitation planel. Hence, one only needs to calculate

With the expansion ofE¢, we can proceed to formulatethe derivatives of the matrix elements, which are functions of
the system of equations using either the Ritz or Galerkhy. To illustrate the procedure, we limit ourselves to find the
methods. The functional for this variational problem igptimum heights of the irises in the waveguide filter shown
F(E,) = Eé‘il Fe(Ey), where M is the total number of in Fig. 1. The thickness of the irises is kept constant (1-mm
triangles anct is the element number, with*(£;) given in  standard metallization thickness).
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Although the substitution of a parameter as described under
1) is only applicable for moving or stretching a stub or a rec-
tangle, respectively, more general structures consisting of a mix-
ture of rectangles, cylinders, circles etc. can be optimized as
well. A more general way than the one shown here to describe
Fig. 3. SingleH -plane iris with triangular mesh. arbitrary geometrical structures as functions of user-defined pa-

rameters can be found in [7]. By using this method, the geo-

Fig. 3 shows a single iris of the filter partly discretized by a trimetrical objects and, hence, the nodes or vertices of the mesh
angular mesh. By changing the height the nodes marked with triangles residing on those objects that are subject to optimiza-
a square are moving up or down. The nodes marked with a cirlen (structural changes), are given as mathematical formula-
stay fixed. All triangles shown in the figure will change theitions. These formulations include the optimization parameters.
area. The matrix elements pK| are functions of the triangle Itis then straightforward to proceed as illustrated in 1)—6) to cal-
areas and coordinates of the nodes. If we change the height§wte the gradients, which can then be used for automated EM
the iris (Fig. 3), we change the-coordinates of the nodes re-Optimization.
siding on the stubs. Therefore, this and the triangle area will
change according to; — z;(h/h1). A closer look atKy; is IV. DiscuUssION

quite revealing as follows: The actual implementation of the technique can further re-
Kf = (bebe € e) > el A° (1 + 611) (16) duc_e the nu_merica_ll effort. The gist of the approach _is thg fol-
4A€ 12 lowing identity, which follows from (12) by the following dif-
For trianglec (hatched in Fig. 3) with nodes 1 and 2 on théerentiation:
moving edge, one obtains

h 9 _ 9
5 5 T K 55 {B}+ <a/ [K]> {£}= an; )
b = T3 — T] Ty The quantity of interest is the gradient of the solution
. h . h (8/0h; ){E,}. Since both{b} and{ E, } are column vectors, it
*1 h_l — %2 h—l is advantageous to avoid inverting the matrices involved and,
and instead, solve for these column vectors. This simple scheme
1 26 ¢ h reduces the CPU time by a factor of three and is described as
) LTy follows.
A® = Sl1 s ae LAE 1) Solve the linear setK|{E,} = {b} without first in-
2T verting the matrix k] (numerical recipes [8]).
1 25 2) Compute partial (jerivative(@/ahi){K }.
It follows for the partial derivatives ok, , heighth = hs, 3) Substitute those in
e.g.,
a a a
orcs,  8Aus — 2(vibs + et ) (wseh — atef) K] 35 {B}= o o - <8hi [K]) {B}.
dhy o h1 (4A€)2 ) . . .
/fo 4) Solve this last equation f@p/ok;){E,} again without

12 (37262 — 1] inverting the matrixK].
For all other element8K7, /9h, the procedure is similar. If ~ Point 4) can be carried out by using an already processed

the gradient with respect 10 all variables is evaluated, a stdRatrix [K] from point 1). (e.g., LU decomposition).
dard gradient optimization routine can be utilized for further

processing. V. RESULTS
In summary, the procedure is as follows. Fig. 4 shows the results of the optimization of tHeplane
1) Substitute the values of thecoordinates of the nodesiris filter (Fig. 1). The size of the standard waveguide (WR75) is
marked with square; — z;(h1/z;) Orz; — z; +h.  axb = 19.05mmx 9.525 mm. The distances between the irises
2) Do the same for the other irises. (thicknesd, = 1 mm) have been kept fixed; = 21.6580 mm,

3) Take the derivatives of all matrix elements that are related = 23.6964 mm, I, = 23.8727 mm. The starting values
to the nodes marked with a square or a circle with respeef the variable heights have been choserhas= 6.8 mm,

to hy, ho, andhs. ho = 10.2 mm, andh; = 11.3 mm. For the gradient opti-
4) Put the results in matrice§ K]/ 9h;. mization process, we have utilized the Matlab routine “constr”
5) Solve (13) for and a triangular mesh with approximately 5500 triangles, 3000
HE,} _ 0511 _ oF nodes, and 50 frequency points. The routine converged after 19
oh; oh; oh; iterations and delivered the optimal heights= 7.17485 mm,

6) Supply the optimization routine with analytically calcusi; = 10.4285 mm, andhs = 11.0367 mm. The results fof1
lated gradients o F/dh;. for both start and optimized parameters are shown in Fi§z 4.
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Fig. 6. Bandpass filter for th&'a-band:a = 7.10 mm,{; = 1.45 mm, [, =

4.15mm,l; = 1.10 mm,ly, = 4.70 mm,hy = 1.75 mm, andh, = 2.35 mm.
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for the optimized values is also displayed. The optimized retur | 35 :
loss in the passband is better than 15 dB. > -2 cm L
. . . . .. . I [
In Fig. 5, the derivatives of1; with respect to the iris heights < h !
are shown. It can be seen that the investigated filter is very se ! !
sitive to structural changes and large values for the derivativi D ——

can occur. It is obvious that evaluating the derivatives with finitc X~ 0 5cm X,
differences can give errors especially near the sharp peaks.

Another filter that has been investigated is shown in Fig. §|98 P_aral'lel-plateWaveguidewith dielectric insert & 4), infinitely long

. . : L in the z-direction.
The variables are the openings of the inductive iriseandh,
respectively. The dimensions of the filter are given in the figure.
The FEM approach is the same as for the asymmeéiriglane matching technique with edge condition, and good agreement
iris filter (Fig. 1). was found.

Fig. 7 shows the result of the optimization of theplane Dielectrically loaded waveguide structures can also be
filter (Fig. 6). Although with a filter synthesis program betteoptimized with the 2-D FEM optimizer. The structure, a par-
starting values could have been obtained, the intention wasaltel-plate waveguide with a lossless dielectric insert, is shown
go far away from the goal values to show the validity of thi; Fig. 8. The FEM analysis is similar to the one explained
method. For the analysis, a triangular mesh with about 2000 @bove, except that now thié-field in the z-direction (H.) was
angles and 1100 nodes and 100 frequency points have been usedl as a quantity of interest. The reflection and transmission
to guarantee sufficient accuracy. The optimization process cawefficient S;i(w, h) and Sai(w, h) and the gradient of
verged after 23 iterations. The same structure has been invgs-(w, ) with respect toh(9511(w, h)/0h) are functions of
tigated in [9] using an equivalent-circuit model and the mode?... The mesh used for this structure is shown in Fig. 9.
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Fig. 9. Mesh setting: triangular mesh with 1088 elements and 601 nodes.
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Fig.11. Derivatives ofS1, | with respecttd: versus height (in centimeters).
Finite-difference calculated with incremef\t: = 0.05 cm.

The transmission and reflection coefficient of the structure
is calculated af = 3 GHz and is given in Fig. 10. Finally, the
analytically evaluated gradient is compared to the gradient eval-
uated with finite differences. This is illustrated in Fig. 11. The
finite-difference gradient is calculated by varying the height of
the stub by the incremer¥~ = 0.05 cm. A new mesh is then
put onto the structure and the reflection coefficient is calculated
again. The difference between the calculated reflection coeffi-
cients divided by the increment/ gives the finite-difference
gradient. The analytical gradient is calculated by the technique
proposed in this paper. Only the nodes that touch the dimen-
sion that is changing have to be taken into account (see Fig. 3).
Good agreement can again be observed between the analytically
calculated gradient and the one obtained through finite differ-
encing.

VI. CONCLUSIONS

We have developed a method for analytically calculating the
gradient of a cost function in conjunction with a general field
solver. The method only requires that the problem be formu-
lated in terms of a general inhomogeneous matrix equation such
as generated by the FEM. All partial derivatives are determined
from a single analysis of the structure, no matrix inversion is
required, and no re-meshing of the FEM grid is needed. Nu-
merical results show excellent agreement between the current
approach and the finite-difference method when small enough
increments are used. Results of the optimization show the va-
lidity of the whole process.
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